Rotordynamics Analysis Overview

Featuring Analysis Capability of RAPPID™

Prepared by
Rotordynamics-Seal Research

Website: www.rda.guru
Email: rsr@rda.guru
Vibration of Rotating Systems

- Vibration Signature can be Quite Complex in Nature

- Vibration Modeling is Frequently used to Aid Design & Development

- Vibration Model
 - Structural Characteristics
 - Structure-to-Structure Transfer Functions
 - Forcing Functions

- Vibration Signature
 - Frequency
 - Magnitude
 - Phase
Vibration Signature Contributors

• **Major Peak Sources**
 - Structural Harmonics
 - Impacts/Rubs
 - Misalignment
 - Rotor Bow
 - Unbalance
 - Mechanical
 - Hydraulic
 - Trapped Fluids
 - Unstable Rotor Whirl
 - Large Scale Flow Effects
 - Periodic
 - Unsteady
 - Unstable

• **Noise Floor Sources**
 - Acoustics
 - Light Rubs
 - Small Scale Flows Effects
 - Turbulent eddies
 - Cavitation bubbles
 - Localized reversals

![Graph of vibration signature contributors](image)
Typical Commercial Machinery

- Stationary
 - Few Weight/Volume Restrictions
 - Low speed
 - Rigid housing
 - Sub-critical rotors
 - Compartmentalized designs
 - Oil Lubrication Systems
 - Incompressible lubricant
 - Stiffness, damping, mass coef.
 - Viscous lubricant
 - High rotor damping

- Low Energy Density
 - Pump: 0.5 Hp/lb
 - Gas Turbine: 3 Hp/lb

- Continuous Operation
 - Steady State
 - Thermal Equilibrium
 - Constant Power Levels

Minimal Unsteady Effects
Typical Rocket Engine Turbopump

- Mobile
- Extrem weight/Volume Restrictions
 - High speed
 - Flexible rotors & housings
 - Highly integrated designs
- Process Lubricated
 - Compressible lubricants
 - Transfer functions
 - Low viscosity lubricants
 - Lightly damped rotors
- Varying Ambient Conditions

- High Energy Density (~ 100 Hp/lb)
 - Use of Cryogenes
 - Wide pressure/temperature ranges
 - Steep Ramp Rates

- Short Run Durations
 - Power Level Changes
 - Steady state never achieved

Major Unsteady Effects
Rotordynamics Model

<table>
<thead>
<tr>
<th>Elements of Vibration Model</th>
<th>Sub Categories</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structural Characteristics</td>
<td>Rotating Assemblies</td>
</tr>
<tr>
<td></td>
<td>Stationary Assemblies</td>
</tr>
<tr>
<td>Structure-to-Structure Transfer Functions</td>
<td>Fluidic Interfaces</td>
</tr>
<tr>
<td></td>
<td>Mechanical Interfaces</td>
</tr>
<tr>
<td></td>
<td>Hybrid Interfaces</td>
</tr>
<tr>
<td>Forcing Functions</td>
<td>Flow Related</td>
</tr>
<tr>
<td></td>
<td>Mechanical Related</td>
</tr>
<tr>
<td></td>
<td>Electrical/Magnetic Related</td>
</tr>
<tr>
<td></td>
<td>Controls Related</td>
</tr>
<tr>
<td></td>
<td>Rotor/Stator Interactions</td>
</tr>
<tr>
<td>Operating Geometry Changes</td>
<td>Distortions</td>
</tr>
<tr>
<td></td>
<td>Relative Displacements</td>
</tr>
</tbody>
</table>
Structural Characteristics

- **Structural Characteristics Purpose**
 - Establish Structural Compliance and Resonance Frequencies

- **Required for Rotating and Stationary Assemblies**
 - Includes Facility/Engine Effects

- **Critical Phenomena**
 - Mass
 - Inertia
 - Load Path
 - Material Properties
 - Temperature dependent

Accurate structural characterization is critical for establishing natural frequency locations
Transfer Functions

Transfer Function Purpose

- Translate the Motion of One Structure into Forces on Another Structure
 - Motion measured in displacements, velocities, accelerations

\[
\begin{bmatrix}
F_x \\
F_y
\end{bmatrix} =
\begin{bmatrix}
H_{xx}(\omega) & H_{xy}(\omega) \\
H_{yx}(\omega) & H_{yy}(\omega)
\end{bmatrix}
\begin{bmatrix}
X \\
Y
\end{bmatrix}
\]

Required for all Rotating and Stationary Structure Interfaces

- Typical Interfaces Include
 - Bearings, seals, dampers
 - Pump, turbine, inducer wheels
 - Splines/couplings
 - Pump out vanes
 - Rub surfaces

Accurate transfer functions characterization is critical for establishing orbit stability and natural frequency locations
Transfer Functions

• General Form of Transfer Function (H matrix)
 - H Matrix Elements are Complex
 - H Matrix Elements May Vary Non-Linearly with Frequency

\[
\begin{align*}
\begin{bmatrix} F_x \\ F_y \end{bmatrix} &= \begin{bmatrix} H_{xx}(\omega) & H_{xy}(\omega) \\ H_{yx}(\omega) & H_{yy}(\omega) \end{bmatrix} \begin{bmatrix} X \\ Y \end{bmatrix} \\
\end{align*}
\]

- Assuming an Interface Adheres to the Linearized Model Leads To:

\[
\begin{align*}
H_{xx}(\omega) &= K_{xx} + iC_{xx} \omega - M_{xx} \omega^2 \\
H_{xy}(\omega) &= K_{xy} + iC_{xy} \omega - M_{xy} \omega^2 \\
H_{yx}(\omega) &= K_{yx} + iC_{yx} \omega - M_{yx} \omega^2 \\
H_{yy}(\omega) &= K_{yy} + iC_{yy} \omega - M_{yy} \omega^2
\end{align*}
\]
Forcing Functions

• Forcing Function Purpose
 • Excite the Rotating and Stationary Assemblies
 • Defined by magnitude, frequency, and phase

• Required for Excitation Forces Acting on the Rotating and Stationary Structures
 • Typical Excitation Forces Include
 • Rotor unbalance
 • Impacts/rubs
 • Misalignment, shaft bow, loose press fits
 • Hydraulic unbalance
 • Trapped fluid in a rotating structure
 • Steady and unsteady flow fluctuations
 • Valve induced
 • Controller induced
 • Controller imperfections
 • Rotor/stator interactions
 • Jet, vane pass, vortex shedding
Rotordynamic Analysis

• Available Analysis Types

 • Eigenvalue
 • Free-Free
 • Undamped Critical Speed
 • Damped Eigenvalue (Stability)

 • Forced Response (Linear)
 • Steady State

 • Forced Response (Non-Linear)
 • Transient (not covered in this information package)
Free-Free Analysis

• Required Information
 • Structural Model

• Analysis Assumptions
 • No Rotation
 • No Interconnection Forces
 • No Forcing Functions

• Analysis Results
 • Natural Frequencies
 • Mode Shapes (planar)

• Why Perform Free-Free Analysis?
 • Verify Structural Model by Comparing to Rap Test Data
Sample Rotor Model
1st Free-Free Bending Mode

ROTORDYNAMIC MODE SHAPE PLOT
Manual Example Case
Multi-Stage Compressor
ANALYSIS POINT: ROTOR SPEED = 0 rpm
NAT FREQUENCY = 17946 cpm
2nd Free-Free Bending Mode

ROTORDYNAMIC MODE SHAPE PLOT
Manual Example Case
Multi-Stage Compressor
ANALYSIS POINT: ROTOR SPEED = 0 rpm
NAT FREQUENCY = 27886 cpm
Undamped Critical Speed Analysis

• Required Information
 • Structural Model
 • Range of Bearing Stiffness

• Analysis Assumptions
 • No Damping
 • No Cross-Coupling
 • Symmetric Rotor Supports
 • Natural Frequency Coincides with Running Speed

• Analysis Results
 • Synchronous Critical Speed as a Function of Direct Stiffness
 • Mode Shapes (circular)

• Why Perform Undamped Critical Speed Analysis?
 • If Precise Transfer Functions are not Available
Undamped Critical Speed Map
1st Synchronous Critical Speed

ROTORDYNAMIC MODE SHAPE PLOT
Manual Example Case: Multi-Stage Compressor
Eigenvalue Analysis as a Function of Rotor Speed
ANALYSIS POINT: Thrust End Bearing Stiffness = 500000 (lb/in)
CRITICAL SPEED = 5347 rpm
STATION 22 ORBIT FORWARD PRECESSION (FORWARD=RED, BACKWARD=BLUE)
2nd Synchronous Critical Speed

ROTORDYNAMIC MODE SHAPE PLOT
Manual Example Case: Multi-Stage Compressor
Eigenvalue Analysis as a Function of Rotor Speed
ANALYSIS POINT: Thrust End Bearing Stiffness = 500000 (lb/in)
CRITICAL SPEED = 12798 rpm
STATION 44 ORBIT FORWARD PRECESSION (FORWARD=RED, BACKWARD=BLUE)
Damped Eigenvalue Analysis

• Required Information
 • Structural Model
 • Transfer Functions

• Analysis Assumptions
 • No External Excitation

• Analysis Results
 • Natural Frequency Map
 • Stability Map
 • Mode Shapes (elliptical)

• Why Perform Damped Eigenvalue Analysis?
 • Provides Essential Frequency Survey to Locate Potential Synchronous and Non-Synchronous Critical Speeds
 • Provides only Steady State Assessment of Stability
Bearing Stiffness Values

ROTORDYNAMIC COEFFICIENT PLOT: Thrust end bearing

Manual Example Case: Multi-Stage Compressor

Eigenvalue Analysis as a Function of Rotor Speed

STIFFNESS (1.0E-3 lb/in)

Roter Speed (rpm)

RAPP V2.60 Run: 10/21/2008 at 10:32:42, Plot File Name = PLOT.TXT
Bearing Damping Values

ROTORDYNAMIC COEFFICIENT PLOT: Thrust end bearing

Manual Example Case: Multi-Stage Compressor

Eigenvalue Analysis as a Function of Rotor Speed
Natural Frequency Map

ROTORDYNAMIC NATURAL FREQUENCY MAP
Manual Example Case: Multi-Stage Compressor
Eigenvalue Analysis as a Function of Rotor Speed

Potential Critical Speeds Located
Stability Map

ROTORDYNAMIC STABILITY MAP
Manual Example Case: Multi-Stage Compressor
Eigenvalue Analysis as a Function of Rotor Speed

Log Dec @ Potential Critical Speeds Labeled
Mode Shape: Mode 1

ROTORDYNAMIC MODE SHAPE PLOT - MODE #1
Manual Example Case: Multi-Stage Compressor
Eigenvalue Analysis as a Function of Rotor Speed
ANALYSIS POINT: Rotor Speed = 5000 (rpm)
NAT FREQ = 3930 cpm, LOG DEC = 0.429, POTENTIAL SYNC CRIT SPEED = 3594 rpm
STATION 22 ORBIT FORWARD PRECESSION (FORWARD=RED, BACKWARD=BLUE)
Mode Shape: Mode 2

ROTORDYNAMIC MODE SHAPE PLOT - MODE #2
Manual Example Case: Multi-Stage Compressor
Eigenvalue Analysis as a Function of Rotor Speed
ANALYSIS POINT: Rotor Speed = 5000 (rpm)
NAT FREQ = 7192 cpm, LOG DEC = 0.845, POTENTIAL SYNC CRIT SPEED = 6992 rpm
STATION 22 ORBIT BACKWARD PRECESSION (FORWARD=RED, BACKWARD=BLUE)
Forced Response – Steady State

• **Required Information**
 - Structural Model
 - Transfer Functions
 - Forcing Functions

• **Analysis Assumptions**
 - Unbalance Always Modeled
 - Other Forcing Functions Modeled as Needed

• **Analysis Results**
 - Vibration Amplitude
 - Dynamic Bearing Loads
 - Deflected Rotor Shapes (elliptical)

• **Why Perform Steady State Forced Response Analysis?**
 - Locate Actual Synchronous and Non-Synchronous Critical Speeds
 - Determine Amplification Factors
 - Establish Response Shapes
Horizontal Vibration @ Bearing

X' AXIS RESPONSE, STATION 8, Thrust end bearing

Manual Example Case: Multi-Stage Compressor

Synchronous Forced Response Analysis as a Function of Rotor Speed

SYNC RESP ANALYSIS
FORCING FUNCTION
LOC AND MAG
STA MAG PHASE
NO. oz-in deg
16. 0.28 0
18. 0.28 0
20. 0.28 0
22. 0.28 0
24. 0.28 0
26. 0.28 0
28. 0.28 0
30. 0.28 0

MOUNT ANGLE = 45.00 degrees

Actual Critical Speed(s) Located

AF=2.85M=57% 3900 RPM
Vertical Vibration @ Bearing
Maximum Vibration @ Bearing

MAJOR/MINOR ORBITAL DISP., STATION 8, Thrust end bearing

Manual Example Case: Multi-Stage Compressor

Synchronous Forced Respose Analysis as a Function of Rotor Speed

SYNC RESP ANALYSIS
FORCING FUNCTION
LOC AND MAG
STA MAG PHASE
NO. oz-in deg
16 0.28 0
18 0.28 0
20 0.28 0
22 0.28 0
24 0.28 0
26 0.28 0
28 0.28 0
30 0.28 0

DISPLACEMENT (p-p) ELLIPSE ANGLE (DEG)

MAJOR AXIS MINOR AXIS RUB LIMIT = 6 mils diam

OPER RANGE

Rotor Speed (rpm)

0 2500 5000 7500 10000 12500 15000
Maximum Dynamic Bearing Load
Rotor Response Shape

ROTOR RESPONSE SHAPE

ROTOR SPEED = 5000 rpm
Manual Example Case: Multi-Stage Compressor
Synchronous Forced Response Analysis as a Function of Rotor Speed
STATION 22 ORBIT FORWARD PRECESSION (FORWARD=RED, BACKWARD=BLUE)

SYNC RESP ANALYSIS
FORCING FUNCTION
LOC AND MAG
STA MAG PHASE
NO. oz-in deg
16 0.28 0
18 0.28 0
20 0.28 0
22 0.28 0
24 0.28 0
26 0.28 0
28 0.28 0
30 0.28 0